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Finite temperature and boundary effects in static space-times 

J S Dowker and Gerard Kennedy 
Department of Theoretical Physics, The University of Manchester, Manchester M13 9PL, 
UK 

Received 23 January 1978 

Abstract. Expressions are derived for the free energy of a massless scalar gas confined to a 
spatial cavity in a static space-time at a finite temperature. A high temperature expansion 
is presented in terms of the Minakshisundaram coefficients. This gives curvature and 
boundary corrections to the Planckian form. The regularisation used is the zeta function 
one, and yields a finite total internal energy. However, it is known that the local energy 
density diverges in a non-integrable way as the boundary is approached. A ‘surface 
energy’ is suggested to reconcile these two facts. Explicit expressions for the total energy 
inside two infinite rectangular waveguides are obtained. 

1. Introduction 

The system under investigation in the present work is a quantum field at finite 
temperature in a static space-time that may have boundaries. Since a number of 
review articles have recently appeared (DeWitt 1975, Isham 1977, Davies 1976) it is 
unnecessary to repeat the motivation for studying field theory in curved space-time. 
In an earlier work (Dowker and Critchley 1977a) we discussed the case of a scalar 
field in an Einstein universe and derived the effective Lagrangian and stress-energy 
tensor at a finite temperature. This case, while it admits of an explicit solution, is a 
rather restricted one and we would like to have more general expressions. 

One of the things we will derive is the correction to the Planck distribution, at high 
temperatures, due to the curvature and boundaries. The effects of boundaries are well 
known in various topics and have been usefully summarised in the review by Baltes 
and Hilf (1976). The curvature effects do not seem to be so generally familiar. 

2. Basic formalism 

To avoid technical difficulties we shall consider only the conformally coupled real 
scalar field, 4, which satisfies 

(O-iR)4 =o;  04 = 4IlwP = V’V’4. (1) 

S = -;(4IG-’lq5) (2) 

An action for this field is 

where we use a formal, covariant space-time matrix notation (DeWitt 1975, 1965). 
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896 J S  Dowker and G Kennedy 

Thus 

4 ( x ) =  (Xld),  

( x l x ' )  = S ( x ,  x ' )  = g-'/4(x)S(x -x ' )g- ' l"X' )  

and the orthogonality and completeness relations read 

and I d4xIx)g1"(x)= 1; g = -det gFV. 

In (2), G-' is the operator in (1) and its coordinate space representation is 

( X  [G- ' ]x ' )  = (0 - & ) S ( X ,  x ' ) .  

The finite-temperature effective action is introduced in the same way as at zero 
temperature (e.g. DeWitt 1965, 1975). Firstly from (2) we have for a small change in 
the parameters specifying the system 

6s = -+(4lSG-'I4). (3 1 
Next the 14) are interpreted as quantum operators and the thermal average of (3) 
taken, which yields 

(SS) = - ~((c$lSG-'l&)) 

( A )  = Tr(e-Po'A)/Tr(e-Bo'). (5 1 

(4 1 
where the angular brackets signify the usual statistical averaging over a canonical 
ensemble, 

The trace in this formula signifies a trace in the quantum field Hilbert space, and fi is 
the second quantised field Hamiltonian whose exact form will be given later. 

It is necessary to state now that in order that conventional concepts about thermal 
averaging be still valid the space-time, A, must be restricted to be static. Then A is 
time independent. 

The next step is to define the finite-temperature (Feynman) Green function 
GPo(x,x') as (Dowker and Critchley 1977a, Gibbons and Perry 1977, Dolan and 
Jackiw 1974, Bernard 1974, Martin and Schwinger 1959) 

T{. . .} standing for the time ordered product with respect to the static time coordinate 
t in the coordinate system, 

ds2=goo(x)dt2+gii(x)dxi dx'; 

6 Wg: = (8s) = 3 tr(G,, SG-'), 

(det gij < 0, x = { x i } ) .  (7 1 

(8 ) 

Then (4) is re-written, as in the zero-temperature case, 

the trace operation this time being a covariant space-time integration, 

tr A = d4x g"*(x /A I x ) .  I 
It is important to remember that GB, satisfies the same equation as G,, the 

zero-temperature Green function, i.e. the usual one G (Dolan and Jackiw 1974, 
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Martin and Schwinger 1959). Thus, 

(O-~R)G,,(x, x')=S(X, x') 

or, formally, in operator notation 

G- 'G~,= 1. 

Then equation (8) reads 

SW(,b' = $ t r ( G B o S G ~ ~ ) = - f i ~  tr(lnGpo)=-fislnDet GBo. (9) 

We thus arrive at the formally divergent expression for the finite-temperature one- 
loop effective action 

Bo - 2i tr(1n Gp0) = -fi In Det Gpo (10) w'" - -1 

plus, possibly, a metric-independent constant of integration which we ignore. 
Before going on to regularise W i i  it is convenient to use the static nature of the 

system to introduce the Lagrangian rather than the action as the important invariant. 
Thus write for the effective action (the same is true for the classical action S) 

J 

where the Lagrangian L is time independent. The thermally averaged stress-energy 
tensor ( pWy)  is now determined by functionally differentiating LFJ rather than Wg;, 

(foe) = 2g-'12 sL"/sgoo(x>, (Rj)  = 2g-'12 sL:J/sg"(x) (11) 

with 

(&) = 0. 

In a more general space-time it would not be possible to get away with differen- 
tiating with respect to the metric functions in some particular coordinate system. For 
example if gio were zero one could not conclude that (pi,) would also vanish in this 
frame (Rio might not be zero) so that, if one wanted these components, a more general 
metric would have to be used. However in a static space-time there are no geometri- 
cal tensors that have one spatial index and one temporal, so that (12) must be true and 
then (11) is sufficient. It is assumed of course that the entire theory is generally 
covariant. 

From (10) the expression for the effective Lagrangian is 

L" = -3 tr3(ln GBo), (13) 

where tr3 stands for an integration over the spatial section of A, 

tr3 A =  dxg'I2(x, tlAIx, t ) .  I 
Incidentally if the imaginary time representation had been employed (cf Bernard 

1974, Hawking 1977) we could have retained the (imaginary) time integration and 
divided by its range, Po to give the Lagrangian. 

Turning now to the regularisation of (13) our method of making LgJ finite is that 
introduced in Dowker and Critchley (1976a) as zeta function regularisation. The 
expressions can be most rapidly obtained as follows. 
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In the expression tr3(Gh SGB,’ ) occurring in the formula for SL:;, corresponding 
to (9), the factor of Gh coming from (6) is replaced by the formal power Gko. If 
Re s > 2 everything converges and the physical quantity is obtained by continuing s 
into the complex plane and down to s = 1. The divergence is then neatly displayed as 
a pole in s at s = 1. 

Performing this sequence of operations yields, 

1 
s - 1  

tr3(GBo SGB,’)+ tr3(Gbo SGB,’)= --S tr3(G;i1) 

whence 

(14) 
i 1  

t r d s  - 1, PO), (s) - -- - 
2 s - 1  

where the continuation of Gko to the whole s plane produces the finite-temperature 
zeta function, {(s, PO) on the space-time. 

Setting s equal to one in this continued expression produces the regularised 
one-loop effective Lagrangian, 

The analysis of expressions (14) and (1.5) will continue in 0 4. 

3. Quantisation in static space-times and the optical metric 

In static space-times the quantisation procedure more or less parallels that in 
Minkowski space-time. It has been given, together with a discussion of the inherent 
non-uniqueness by Fulling (1973) and we shall simply use his results (see also Gibbons 
and Perry 1977, Kramer and Lotze 1974, Unruh 1974a, b, Ashtekar and Magnon 
197.5, Dowker and Critchley 1977a). 

In the static coordinate frame (7) the mode decomposition of the field 4(x)  is 

$ = E  (2Wk)-l(ak e-i0k‘4k +a:  eiok‘4:) 
k 

= C g~~’*(2Wk)-l(ak e-iok‘&k + a :  eiok‘&z) 

where the mode functions 4k, satisfy the elliptic equation 

(A2 + g”ai In goodj +BE + $A, In goo + $giJai  In goodj In goo)& = o i 4 k ’  

k 

with 

6 k  = gAL24k. 
In these equations the barred quantities are calculated using the ‘optical metric’, 

E&u = g,,/goo (E”” = g’”go0) (see Gibbons and Perry 1977) and A2 is the Laplace- 
Beltrami operator on the three-space. 
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From (16) we note the important fact that the eigenvalues wk are conformally 

The field Hamiltonian H is given by 
invariant, because two conformally related metrics have the same optical metric. 

where the energy density Too is given by 

with S = L dt, given by (2). Then the mode decomposition gives the quantum field 
Hamiltonian A as 

In this derivation we must use the fact that the mode functions & are normalised 

The statistical mechanics of the system can be developed by constructing the 
with respect to the weight provided by the optical metric gFY. 

partition function 2: 

2 = Tr(e-’O’) (18) 

using the A of (17) and the properties of the eigenvalues wk. Rather than Z it is often 
more convenient to use the free energy F: 

where S is the entropy and E the internal energy, 

E = (A). 
A variational expression for E can be found from (1 1) by re-scaling goo by a constant 
factor, goo+ a2goo. It is easy to show that 

In fact it appears we can go further and relate the free energy to the effective 
Lagrangian. To do this we use equation (14) in order to see how Lis,' changes when 
goo is re-scaled. First, however, a closer inspection of the meaning of the ‘power’ Gb0 
is necessary. 

4. The free energy and effective Lagrangian 

Generally speaking a precise meaning can be given to the power As only if A is an 
elliptic operator. In the present case, for G-’,  this can be achieved by working in the 
Euclideanised space-time ME obtained by the replacement t + it from A. Then Gio is 
the matrix power of GBo with all interior real time integrations restricted to the 
interval 0 to $0. 
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Consider the quantity tr3(G&')- tr3 g(s - 1, PO)  needed in (14) and re-scale goo-) 
a2goo. Imagine the product of s - 1 GBo's written out. There will be s-2 space-time 
integrations. Concentrate on just the time integrations, each of which runs from 0 to 
ipo. The factor of g'" at each integration acquires a scaling of Q and we may combine 
this with the dt  to call at, t' and obtain s - 2 t' integrations running from 0 to ia&. 
The Green function factors will each be like GBo (&-'ti -a-'tl; a2goo), where we have 
displayed dependence on a 2 g .  Now, re-scaling goo is equivalent to re-scaling t so that 
we have the relation 

GBo(a-'t'; &zoo)= GpBO(f'; goo). (21) 

Note that po has been re-scaled on the right so that both sides have the same 
periodicity in t ' ,  namely ia&. 

Equation (21) shows that tr3 G"-' scales as 

where the overall factor of a comes from the g'" in the definition of tr3. 
If s is continued into the complex plane and (14), or (15), used we find 

and then (20) rapidly produces 

Comparison with (19) yields the relation between the free energy and the effective 
Lagrangian, 

F = -LgJ +M/po (24) 

where M is temperature independent and is, so far, undetermined apart from satisfy- 
ing the condition 

M(a2g00, . * .) = M k o o ,  * .). 

The zero-temperature relation 

F ( W )  = -L:) 

is found by setting Po equal to infinity in (24). The zero-temperature free energy F ( w )  
equals the zero-temperature internal energy E(w)  which is just the vacuum average of 
A. Thus we have the useful relation 

F(W)  = E(W)= -L$). (25) 
Although our  main interest is with a general static metric having a non-constant 

goo it is useful at this stage to consider the ultrastatic case, in Fulling's (1973) 
terminology, for which goo is constant, say one. Since the optical metric is ultrastatic 
we can use the barred notation, and refer to the ultrastatic metric as the optical metric, 

In the optical metric G, in equation (24), is zero. This can be shown in several 
ways. We can begin again and construct both F and -L$? to show they are equal. 
Alternatively we can note that at low temperature, po+co, both F and ,522 vanish 
exponentially fast. Hence there can be no 00' term in (24). 
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To see this in more detail we proceed to give some explicit constructions. Firstly 
we must now say that in this paper the time variable t is allowed to run from -a to 
+a and that the spatial section of A, denoted by A3, is compact with a boundary, 
a A 3 .  For simplicity (A, g)  is denoted by A while the optical manifold (A, g) is written 
as 2, and similarly for the spatial section and boundary. is the direct product of the 
time axis T and the spatial section J3. 

In Dowker and Critchley (1976a) the zeta function was related to the proper time 
quantum mechanical propagator, K,  and a similar expression can be employed in the 
present case. We write the Mellin transform 

(xl5(s, P0)lX’) = e r(s) Iom dT T s - l ~ , o ( ~ ,  X I ,  T )  

where Kpo ( x ,  x ’ ,  T )  satisfies the Schrodinger equation 

Kso(x, XI,  T)=ig-l/zS(x - ~ ’ ) S ( T )  

and has period Po in imaginary time. 

GPO, can be expressed as image sums of zero-temperature quantities, 
It is shown in Dowker and Critchley (1977a) and Dowker (1977) that K,,, and also 

m 

where A is the time-like unit vector (1,0,0,0). 
In the optical manifold, time is completely separated from space and the pro- 

pagator R factors so that if (27) is used we find for c3 [(s, Po), which is needed in 
equation (15) for Lg?, 

where 

R3(x, x’, T )  is the propagator on the spatial manifold 2 3 ,  and satisfies the equation: 

R3(x, x’, ~ )= ig -”~S(x -x ’ )S (~ ) ,  

subject to the boundary conditions appropriate to 2 3 .  For example if aJ3 # 0 one 
would typically make K3(x, x‘, T )  vanish if either x or x‘ E d 2 3 .  Perhaps it is worth- 
while interjecting some general remarks on boundary conditions. 
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These can be imposed when solving the mode equations (16) and we shall consider 
only Dirichlet or Neumann (D or N) conditions and apply them to the c$ functions. This 
is more convenient than using the q5 because it makes the analysis in the optical metric 
relevant for the general case to which it is conformally related. These boundary 
conditions mean that there is no 6, or q5, flux across 8 ~ 2 % ~ .  

In terms of the eigenfunctions c$k and eigenvalues fuk, K3 can be written 

k 

Substituted into (286), the form (29) yields for the integrated zeta function the 
expression used by, e.g., Hawking (1977) in a special case (see also Gibbons 1977): 

dk is the degeneracy of the kth mode. If one knows the properties of the modes 
explicitly it may be possible to relate this expression to already defined zeta functions. 
In the Einstein universe, for example, this can be done (Dowker and Al’taie 1978). 

On the other hand if (29) is substituted into (28a) and the m = 0 term, which is just 
the zero-temperature expression, separated off we find for L&l,‘ a familiar statistical 
mechanical sum-over-states form, after summing over m, 

Equations (17), (18), (19), (25), and (31) allow us to identify F and -E$:, as 
mentioned before 

Expression (31) is the one suitable for low temperatures, and it can be seen that, if 
the f u k  are discrete, as they are if Ad3 is compact, then P tends to P(c0) exponentially 
fast as Po+cO. However, if the system becomes non-compact, to give a continuous 
eigenvalue running from 0 to 00, there will be a polynomial behaviour at small 
temperatures. For example in the parallel-plate geometry there is an extra PO3 term, 
while for the cylinder we find PO2 (see equation (59)). 

Equation (3 1) also shows that the infinities reside entirely in the zero-temperature 
part, E$). This is generally true. If the behaviour near 7 = 0 of the integrand in the 
expression for tr3 ((s, Po) obtained from (26) and (27), 

e i m / 2  

tr3 ( ( 8 ,  PO)  = - 1, dT I dx gl’*Km(x, x - imhPo, T), (32) 
m U s )  o 

is investigated, it can be seen that only for the m = 0 term (the zero-temperature 
expression) do we need the condition s > 2  for convergence. In the other terms 
(m # 0) the K, factor provides all the convergence needed since it goes to zero 
exponentially fast. Thus, if we set s = 0, the pole in T(s) will kill every term except the 
m = 0 one. Equation (15) can then be re-written: 

showing clearly that the divergence is temperature independent. The renormalisation 
of the Lagrangian is thus the zero-temperature renormalisation. 
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Returning to the optical metric and equation (31), if the space-time in which we 
are interested really is ultrastatic (goo = 1) the renormalised free energy would be 
obtained as the negative of the renormalised effective Lagrangian which is obtained 
from the LF: of (31) by replacing I%) by its renormalised expression, in accordance 
with the previous remarks. 

Without, at this stage, entering into any details, the renormalised L z )  is found by 
dropping the pole term in (33), for PO = CO, and we can write 

where FCs) = -E(s)  
In order to obtain an expression suitable for high temperatures it is necessary to 

use the asymptotic expansion of R47) in powers of T,  

where ES stands for terms which vanish exponentially fast as T tends to zero. The El 
are Minakshisundaram coefficients (Minakshisundaram and Pleijel 1949) modified by 
the presence of the boundary. They may be written as (Greiner 1971, Gilkey 1975c) a 
volume part plus a boundary part, 

The &(x, x’) are the Minakshisundaram coefficients for the case 8x3 = 0 if 1 is 
integral and vanish if 1 is half integral. The coincidence limits d l ( x , x )  are given by 
local expressions in terms of the metric on 3 3 .  Expressions for the dl ,  d2 and d3 
coefficients have been given (DeWitt 1965, Sakai 1971). The b;(x)  depend on the 
induced metric and extrinsic curvature of ad?,. Further comments will be found later. 

It is clear that this form of R ~ ( T )  is useful only for small T or for cases where 
convergence as T becomes large can be ensured as, for example, in the case of a 
massive field treated by Dowker and Critchley (1976a) or as in equation (286) for all 
terms in the sum except the n = 0 one. In this case therefore we will have from (26), 
(286) and (35) an asymptotic expansion for the zeta function in inverse powers of the 
temperature l /Po ,  if we separate off the n = 0 term, 

- -  i eimS/’ O0 tr3 c(s, PO) = - - I d~ ‘rS-lR3(7) 
P o  U s )  0 
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C stands for the contribution of the ES terms in (35) which are significant if T is not 
small. As Po increases, the upper T integration range becomes more important and C 
is then not negligible. Roughly speaking the asymptotic expansion is valid if PO’D h 
1, where D is the typical dimension or size of J3, From now on we drop C. 

f3(s,  00) is the ordinary (zero-temperature) zeta function on the spatial section, 2 3 ,  

and lR(s) is the Riemann zeta function. The relation between (37a) and (37b) follows 
from the functional relation satisfied by ~ R ( s ) .  

Equation (14) with (37) now allows us to find the expansion for the free energy P :  

-21 @ 1-2 

( 4 )  ’ x LE421 - 3 ) r  

where y = -1,+(1). From this expression we must subtract the pole term, as in (34), to 
get the renormalised free energy Fren, To show that there are no pole terms remaining 
in Pre, we have recourse to a result of zeta function theory (e.g. Minakshisundaram 
and Pleijel 1949) that in d dimensions the integrated Zeta function trd &(s, 00) eValU- 
ated at s = 0 is proportional to the cd/2 coefficient in the expansion of trd&(T), 

trd &(07 a)= ( 4 T ) - d ’ 2 C d / 2 .  (39) 

Applied firstly to the spatial sections, s3, (39) gives 

tr3 t ( o ,  CO) = i . r r -3 /2~3 /2  
- -  

which shows that the t 3 / 2  pole cancels the &(O, 00) term in (38). When applied to the 
space-time, 4, for which d = 4, we can remove the time integration in the tr4 to give 
tr3 since the integrands are time independent. Thus 

- 
tr3 f(0, CO) = i(16.rr2)-’C2, (40) 

where the factor of i comes from the continuation from the Euclideanised space 2,. 
This result shows that the subtraction (34) cancels the E2 pole in (38) and we finally 
arrive at the ‘renormalised’ free energy (equivalently, the negative of the effective 
Lagrangian), 
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For completeness we give the expansions for the internal energy E r e ,  and entropy Sren 

which follow from (41): 

The entropy is automatically finite without any subtraction. 
Granted the significance of the renormalisation, and this is discussed in more detail 

in 0 5, these expressions are of immediate value for ultrastatic space-times the 
simplest non-trivial example of which is probably Minkowski space-time with spatial 
boundaries. However our immediate aim is to extend these results to the general 
static metric for which gFy is the optical form, and for this purpose we use a conformal 
transformation method. 

If it were not for the infinities in the quantum field theory the statistical mechanics 
would be conformally invariant, determined solely by the d k  and wk, but infinities 
mean a regularisation-renormalisation process which violates the conformal invari- 
ance leading, for example, to the famous anomalies and, more pertinent to us, to 
different statistical mechanics. 

Since it is only the zero-temperature part of the theory that has the infinities we 
can relate F and p in the following manner. Equation (32) shows that the effective 
Lagrangian can be written as the sum of a zero-temperature part (m = 0) and a 
‘finite-temperature correction’, i.e. the terms with m # 0. Equation (24) shows that 
this must be true for the free energy as well, 

F = F ( a ) + F ’ .  

The correction F’ will be finite and conformally invariant so that we can equate it to its 
value in the optical metric, 

F’ = p’ .  
Then we have 

F = F(CO) - P(co) + P (43) 

where P has been discussed above and for high temperature is given by (38). The 
advantage of this form is that we know something about F(co)-P(co) through 

The general idea is explained in Dowker and Critchley (1977b) but for complete- 
ness will be outlined here. Again for generality consider a &dimensional Riemannian 
space and the corresponding traced zero-temperature zeta function, trd t ( S ,  g), where 
we have dropped the temperature label and replaced it by the (functional) dependence 
on the metric gFv. 
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This traced zeta function can be thought of graphically as the continuation of a 
‘ring’ of s Green functions, G(x, x ’ ) ,  each x being integrated over, with a g”’ factor. 
Under the conformal transformation g,, + A ’g,, we know that 

G(x, x’)+A’(x)G(x, x ’ ) A ’ ( x ’ )  with p = (1 - d ) / 2  
and 

g’l2 + A dg1/2 
so that the only change in trd fh(8, g), -tr G’, is to introduce a factor of A 2  at each 
integration point. Thus if we functionally differentiate trdfh(S, A ’g) with respect to 
A ( x )  we will break the ring at the integration point, x ,  to give a line of s Green 
functions and only s - 1 integrations. This is the definition of the untraced (diagonal 
part) zeta function and we derive the theorem 

where the factor of s comes from the fact that there are s integration points in trdcd, 
each with a factor of A ’. 

Equation (45) can be used to prove that the Minakshisundaram coefficient cd/Z, is 
conformally invariant. Setting s equal to zero in (45) and using equation (39) we find 
the required statement, 

a result incidental to our present purpose, but useful later. 

the reduced formula 
In a static space-time we can, as before, remove the time integration in tr4 and get 

where the conformal factor is assumed to be a function of only the spatial coordinates. 
The idea now is to use (47) to expand tr3 l ( s ,  A ’g) about the point A = 1. To first 

order in In A we have 

tr3c(s, A2g)= tr31(s, g )+  J tr3 ‘(” A2g)l lnA(x) 
SlnA(x) A = I  

so that from (47) 

t r3~( s ,A2g) - t r3~( s ,g )=2s  J dxg1’2(x, t l t ( s ,g ) /x ,  t)lnA(x)+D,, (49) 

where D, is the remainder. If A is constant it is easily checked that D, is zero so that 
D, must depend only on the gradient of A ,  

D, = D,[VA, gl with D,[O, g] = 0 
and 

Do[VA, g] = 0. 

We now interpret g,, as the optical metric E,, and choose A = goo so that A2g,, in 
(49) is the original general, static metric. Reverting to our previous notation, setting 
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s + s - 1 in (49) and dividing by (s - 1) we find, if (14) is referred to, 

dx g (50) 1/2 - - LE) - LE) = -Ti (x, &(O, CO)lx,f)  In goo + Ob [Vgoo, El 
I !  

where bb is the contribution from the D, remainder. 
All the ingredients are now to hand to construct the renormalised free energy, F,,,. 

Firstly we decide on the subtraction needed to turn F into F,,,. The divergence in F is 
the divergence in F(co) which is the divergence in -Lz). From (33) this last is a pole at 
s = 1 with residue proportional to tr3 lJ0,oo). If the conformal invariance of the zeta 
function at s = 0 is used (see equations (46), (47)) this residue is also proportional to 
the corresponding quantity in the optical metric, E3 { (O,  CO), so that the divergence in 
Lkf’ is the same as that in E:), Therefore F diverges in the same way that P does and 
we can write, from (43), (44) 

F,,, = E) - Lg) + F,,, (51) 

so, if (41) and (50) are combined, 

an expression valid for large temperatures. The main effect of going from P to F has 
been to change the constant, PO, in the E 2  term into p = pogAi2, the Tolman (inverse) 
temperature. 

If we had chosen g,, in (49) as the original static metric and A ’g&,, with A = gii ,  
as the optical metric, which we could have done, equation (50) would have read 

Lg-L$)=-L* 
21 1 dxg1/2(X, t ~ t ( o ,  CO)ix, t )  In goo+ob(vgii, g). 

In this case the relevant terms in (52) would be 

i J dxg’/’(x, t l ~ ( o ,  CO)~X, t) ln ( ~ / 4 n - ) + ~ b .  (53) 

The high-temperature expansions for E,,, and S,,, can be quickly obtained from 
(42a), (42b)  in similar fashion to F,,,, or direct from (52). We do not write them down 
since the only change from (42a) is that Po has become P in the E, term and there is an 
extra Db. Curiously the entropy depends only on the optical metric (S(CO) = 0). 

In order to determine the precise nature of the remainder term D, it is necessary to 
examine the conformal transformation more closely. The analysis becomes quite 
complicated and there does not seem to be any closed formula. In this paper we shall 
leave the expressions as they are and return to a more exact treatment at another time. 
If goo is only a slowly varying function of x then Db will be small. 

Regarding the form of the expansion (52) we recognise the first term as the usual 
Planck distribution with Eo = 5 dxg”’ = IXS~, the Riemannian volume of 2 3  or, 
equivalently, the optical volume of As. 
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If we formally define a free energy density f(x) by 

F =  J d x g ' / 2 f ( x )  

then the first term of (52) gives a contribution to f(x) of the form 

which depends solely on the local Tolman temperature. The other terms in (52) 
involving only powers of Po can likewise be expressed in terms of p. This follows by 
explicit construction of the E coefficients, or from just their scaling properties or from 
the general scaling property of F, 

F p o [ a  2gool = aFaP,[goOl, a = constant. 

This scaling rule must be true but it is instructive to check it term by term in (52). It is 
valid for the ln@/47r) plus the D' terms by virtue of (49) and (22). The term needed 
to provide the scaling of the E 3 / 2  In Po term comes from 6 3  & (0, CO). We leave the 
details as an exercise to the reader. 

If one wishes, one can think of the terms in (52), apart from the first one, as being 
corrections to the Planck form due to curvature and boundary effects. To specify 
them more closely the precise expressions for the coefficients El are required. As has 
been mentioned, if A%, has no boundary, ax3 = 0, all the E ( Z ~ + ~ ) / Z  vanish, and explicit 
forms for the volume parts d l ( x ,  x ) ,  d2 (x ,  x )  and d3(x, x )  (refer to equation (36)) have 
been found, the first two by DeWitt (1965) (see also Christensen 1976) and the third 
by Sakai (1971), in terms of the local curvature of 2,. More general expressions and 
formulae can be found in the work of Gilkey (1975a, b). 

In our case d l ( x , x )  will vanish due to the choice of a conformally invariant 
equation, (l), while the expression for a2(x ,  x )  can be found, by now, in many places 
since it is the coefficient which enters into the conformal trace anomaly (Dowker and 
Critchley 1977b). 

If A%, is flat (this means that A is conformally flat) the most general explicit results 
for the Er seem to be those of Waechter (1972) and the more formal ones of Greiner 
(1971) and Seeley (1967). (See also Gilkey (1975c).) Some of these results are 
summarised by Baltes and Hilf (1976) where further references can be found, parti- 
cularly to the derivation of the so called 'edge' and 'corner' terms which are needed 
for non-smooth boundaries. 

Writing the E/ as in equation (36), the explicit forms for the first few boundary parts 
b; are (e.g. Brownell 1957, McKean and Singer 1967, Waechter 1972), for a smooth, 
convex boundary 

where K1 and k2 are principle curvatures of , 3 3 3 ,  and l&@31 is the Riemannian volume 
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(surface area) of a$3, and equals Id@.. The coefficient 61 may be expressed alter- 
natively as 

6 - 1  1 - 3 I d - -  CTgif& 

i.e. one third of the integrated trace of the second fundamental form, a, of (see, 
e.g., Eisenhart 1926, p 158, problem 2), a form valid for any dimension. We should 
perhaps note that (54c) has been proved for a flat ~ # 3  only. 

For the sphere in flat three-space Waechter (1972) has given all the El up to F5l2; 
E3/2 vanishes as is seen from (54c) but E2 does not. 

Case and Chiu (1970) have performed the electromagnetic energy mode sum in a 
cube and obtained an expansion similar to (42a), but without a In PO term. The first 
few terms agree numerically with (42a), allowing for the different physical systems. A 
similar statement is true also for the sphere (Baltes and Hilf 1976). 

Apart from these high-temperature expansions we can use a general sum-over- 
states form like (31). Thus 

F = F ( a ) + F ' = F ( c o ) + p ; '  1 dk ln(l-e-Po"k) 
"k 

( 5 5 )  

with, from (25),  F ( a )  given by the negative of the expression in equation (33), for 
PO = a. Taking the same renormalisation prescription as before yields 

as the appropriate low-temperature form. This then yields the energy and entropy: 

with, of course, 

= F r e r i ( a ) .  

A low-temperature expansion for F analogous to (52) for high temperatures can 
be given in terms of the function that describes the distribution of eigenvalues, N(w), 
(the mode function, e.g., Brownell 1957, Clark 1967, Baltes and Hilf 1976, Balian 
and Bloch 1970, 1971), for small W .  N ( w )  is defined by 

N ( w ) =  1 d k +  1 i d k  
W I . < O  W k = W  

such that the density of eigenvalues p ( w ) ,  

p ( w ) = c  a(w-@k), 
k 

is equal to dNldw. Then we can write 
m 

- d N  
0 dw 

F = P : ~  j ln(1 -e ' O w )  - dw + F(a). 

Large Po means that small w is the most important region and, writing a Taylor series 
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for dNldw, 
oc 

dN(w)/dw = un ( n  !)-'N'"'"(O) +remainder, 
n=O 

we find 
m 

F = F(m)-  1 P~""N'""'(O)CR(n + 2)+remainder. (59) 
n = O  

Strictly speaking, for entirely discrete modes, dN/dw will be all 'remainder' i.e. all 
the N'"'(0) will be zero and there will be no powers of T in the low-T expansion. 
However, if the system is non-compact, so that there is a continuous eigenvalue 
running down to w = 0, some of the ""'(0) will be non-zero. For example, in the 
parallel-plate Casimir geometry N'"(w ) has a contribution 

1 dkl  dk2 S(W - (k: + k:)'") - 
so that N"'(0) is non-zero giving a correction to F (and E )  which goes like T3, as 
found by Mehra (1967) and Brown and Maclay (1969). The reader can check that the 
cylinder gives a T2 behaviour. 

5. Renormalisation and boundary effects 

We turn now to the question of renormalisation, that is, to the extraction of physically 
significant finite answers. What one does depends on the questions one asks. For 
example, it seems to be necessary to specify what is the significance of the boundary, 
d A 3 ,  Two basic situations can be envisaged: ( a )  dA3 is actually the limit of physical 
reality so that there is no outside, no 'other side', of dA3; and ( b )  a& divides a larger 
manifold A; into two parts, M3 and its closure A?, so that 

Ai =A3UAT.  

(Strictly speaking we should include a d 3  in A; since A3 and Jllf are taken as open 
sets. We assume that 8 4 ,  has no thickness.) 

Clearly the nature of the boundary will be reflected in the boundary conditions on 
the fields. In the present paper we did not wish to become involved with questions of 
physically realistic boundary conditions and simply chose D or N conditions on 4, 
which implies that there is no flux, of 6, or 4, across ,323, or aA3. 

Up to now we have been implicitly concentrating on case (a) where (43) would 
give the 'intrinsic', unrenormalised free energy F of the system contained in A3 and 
(33) the effective Lagrangian LgJ. The renormalisation we used for L$:, and therefore 
for F, was to drop the pole term in (33). This procedure is equivalent to defining 
Det GB, to be exp(tr4 g(0, Po>) which is certainly very reasonable (Hawking 1977, 
Gibbons 1977) and gives the right answers, when these are known. Such a definition 
avoids any questions of renormalisation because the infinities have been defined away. 

However convenient or economical this may be, it is probably better to keep the 
pole terms and argue them away by an explicit renormalisation, if possible, although 
the final result will probably be the same. 

Conventionally (e.g. DeWitt 1965, 1975, Utiyama and DeWitt 1962) the a2 part 
of the c2 pole (remember that tr3 c(0, co)=i(16n2)-'c2 where the cl are the 
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coefficients in the expansion of tr3 K,(T)) in (33) is absorbed by a renormalisation of a 
quadratic term introduced into the free gravitational action for just this purpose. 
Similarly, for consistency, the removal of the boundary part b2 (see equation (36) and 
recall that E2=cZ), ought to correspond to the renormalisation of some surface 
gravitational action. Dimensional arguments show that the analogue of the quadratic 
volume action, R g d x, is typically a tr (n3 dt  d a  term (tr here just means matrix 
trace). Gibbons and Hawking (1977) have recently emphasised the role of surface 
terms in the gravitational action, the usual jA Rg d x part being augmented by a 
Sa, tr s1 dC term. 

Our final comment on case ( a )  is that there is still, of course, the possibility of 
further finite renormalisations. 

Turning now to case ( b )  the first question which springs to mind is the one Casimir 
asked. Given a large enclosure Ai at temperature PO',  what is the global effect of 
introducing a boundary a&? This is easily expressed as the difference in free energy 
before and after constructing the boundary: 

2 1 / 2  4 

1 / 2  4 

AF = F ( A 3 ) +  F ( A T ) -  F(A[3) .  (60) 

A similar technique was used by Lukosz (1973a, b) in the zero-temperature case for 
the internal energy. 

F in (60) is the unrenormalised free energy and (60) is a statement of 'Casimir 
renormalisation'. We note that A F  is not intrinsic to either A 3  or A: but is an 
attribute of the entire manifold. 

Let us consider the high-temperature expansion of AF. For each term in (60) there 
will be an expansion like (52), or (41) for the ultrastatic case which we consider from 
now on for simplicity. 

Firstly note that the outer boundary of Thus the 
contributions from aAi in the last two terms of (60) cancel. Further, all the volume 
terms, a!, in the three expansions cancel since 

al(&)+a@T) = ar(A3 U& 1. 

br(-aA3) = (-1)21+1b,(a&3) (61) 

is the boundary of Ai, 

In addition, the surface contributions, bl, have the property, for smooth boundaries, 

and, on noting that the inner boundary of AT is the boundary of A3 but oppositely 
oriented, -8Jt3, the high-temperature expansion for the Casimir free energy @ is 

where the 6; are evaluated €or the boundary a&3, and we have simplified the notation 
by dropping the tr3 and the P dependence of the & terms. 

We see that the Casimir renormalisation has eliminated the EZ pole. 
If the boundary were flexible it would adjust its shape and size so as to minimise 

AI? For a dominant first term in (62) the Casimir stresses would try to increase the 
boundary surface area (see equation ( 5 4 ~ ) ) .  If the second term were at all appreci- 
able, or if the electromagnetic case were being considered, for which the K 1 1 2  term 
does not arise, the stresses would tend to distort the shape of 
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To see this note that the expression (54c) for b ; / Z  (in flat space for scalar fields) is 
unchanged under re-scaling of distances on a& and so is purely shape dependent. 
Use of the standard results 

d@/?1/?2=4rx = 4 ~ ( p - h )  I,, 
where x is the Euler characteristic of the surface, p its number of disconnected parts, 
i.e. 

P 

i = l  
U 

and h its total number of holes, yields the expression 

for the 5312 term in AF.  The surface will try to adjust itself so that the first term in the 
bracket is a maximum, assuming that the deformation does not alter the topology. For 
example, 6;,2 is zero for a sphere but becomes positive if the sphere develops a 'spare 
tyre' bulge around the equator. 

If the boundary has sharp edges and corners (61) no longer holds and the cancel- 
lations are not complete. In particular there is probably a residual boundary pole 
Ab;/(s - 1). We say probably because the expressions for b2 have not been evaluated 
yet. 

A similar general conclusion is reached by Lukosz (1973a, b) who uses a different 
method of regularisation and works at zero temperature. Essentially he uses point 
splitting, in the guise of a high-frequency cut-off. This yields a residual divergence in 
the Casimir energy which, dimensionally, goes like Ab;/S' where 6 is the small 
distance introduced by the cut-off. Presumably if Lukosz's calculation were taken 
further it would produce a residual divergence Ab;ln6, to compare with the zeta 
function form Ab;/(s - 1). 

(This difference in number, and form, of divergences, is typical of the two 
regularisation methods. It is well known that point splitting produces, in the absence 
of boundaries, three sorts of divergence, of the order of c16-2 and c2 In 6, while 
the zeta function and dimensional regularisations give only a c ~ / ( s  - 1) pole. Usually 
this difference is of no account since the infinities are renormalised away leaving 
identical finite parts.) 

Lukosz (1973a, b) does not resolve the problem of the residual divergence except 
to say, quite reasonably, that sharp edges and corners are unphysical anyway. 

Apart from this question mark, the Casimir renormalisation seems quite reason- 
able and suitable for the situation it seeks to cover. There is, however, another point 
of view. Instead of taking the F 's  in (60) to be unrenormalised, one takes them to be 
the renormalised ones, and defines 

W r e n  = F r e n  (A3) + F r e n  (A 1 - Fren(A& 1. (63) 
This combination is then no longer a means of rendering anything finite. It is 

simply a result of applying the case ( a )  attitude to each region. AFren will be finite 
even if there are edges and corners. It equals A F  for smooth boundaries. 

Further light might be thrown on the divergence problem by looking at local 
quantities and this forms the subject of the next subsection. 
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5.1. Local questions 

So far we have been concerned mainly with integrated quantities such as the total free 
energy and the Lagrangian. Consider now the problem of determining the local 
averaged stress-energy tensor density. If the Lagrangian is known as a functional of 
the general static metric then a functional differentiation, equation (1)’ yields the 
answer. Alternatively the explicit form of Twy can be used. As an example we choose 
Too and it is then easy to show, using Parker’s (1973) conformal relation for the 
conformal stress tensor, that (foe) is given as the coincidence limit, 

(foo(r)) = igoo(x) lim [ ~ o ~ o + ~ @ ~ f i i ~ + ~ i f i i ~ > l G , o ~ x ,  x‘), (64) 
x - x  

where the bars refer to the optical metric and Go, is given by g~6’Gp0gbb’’. 
This particular form is not really needed for the points we wish to make just now, 

but is given for reference. All we need to know is that (foe) is given as the coincidence 
limit of some differential operator acting on the finite-temperature Green function. 
This can be expressed briefly as 

(foe) = [FooGp,]. (65) 
( ~ O O )  diverges and so some prescription, which we shall term ‘renormalisation’, for 

making it finite is needed. One possibility, used by a number of people, including 
Brown and Maclay (1969), Candelas and Raine (1976), Candelas and Deutsch (1977) 
and Dowker and Critchley (1976b), in the case that the space-time is flat, is to write 

Goo(&) = Go,(&’)+ Gbo(A) (66) 
where Gpo(JU’) is the Green function for the complete space-time A’, without the 
boundary, a A 3 .  In other words it is the ‘Minkowski finite-temperature Green 
function’ given as the image sum, 

where Gm(x, x ’ )  is the usual Green function (= -i/47rZu’, but we do not need the 
exact form). The Gbo(A; d A 3 )  is the correction term due to boundary effects. 

The renormalisation adopted by the above authors is to drop the Minkowski 
(zero-temperature) Green function in (67)’ i.e. the m = 0 term. This gives a subtrac- 
ted ‘Green function’: 

which is put into (66) to give a G”,(A) which, in turn, is used in (65) to produce a 
finite ( f + O o ) & ,  

This quantity is supposed to have physical significance. 
If the space-time is curved then the renormalisation is more complicated than 

simply dropping the m = 0 term in (67). One would have to have recourse to point 
splitting, dimensional regularisation or a local zeta function method. At the moment 
this would only complicate matters. 

An analogous equation to (69) holds with A3 replaced by its closure A;. For 
simplicity we write this as A! +A*. 
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To try to make contact with the global quantities considered earlier these densities 
can be integrated. Firstly we construct the Casimir energy AE (cf (60)) from the 
unrenormalised densities (65):. 

AE = I,, dx[ Too(Gp,(Jbl’)+ Gb,(A, a&,)>] 

dx[FdG,,(.”+ Gbo (A*, -8Ad)I - ~ ~ [ F o o G , ( A ‘ ) I  (70) +I,, .ac; 

- I,, I, - d.t[FooGbo(A, aA3)I + dx[TooGbo(A*, -8A3)I .  (71) 

It is easily seen that this result is unchanged if the renormalised densities of (69) 
are used since the renormalisation affects only the complete manifold, A‘, quantities, 
and these cancel. The difference is that in the global Casimir renormalisation no 
significance is attached to the local densities. 

Asymptotic expressions for (foe) have been derived by Deutsch and Candelas 
(private communication) and later by Critchley. They show a divergence with a 
leading term of the order of d - 3  as the boundary is approached, where d is the 
distance from the boundary. The coefficient is proportional to ( K I  + K ~ )  so that the 
density reverses sign on the other side of the boundary. If this leading term is 
integrated over a thin shell surrounding the boundary there is a cancellation of the 
strongest divergence but infinities of the form 8-’ and In S, as S + 0, still remain (8 has 
dimensions of length). To see whether these can be removed also, one needs more 
terms in the expansion of ( f ‘oo)  in powers of d-’ .  Deutsch (private communication) 
has evaluated the term of order d-2 .  Unfortunately the next term at least is needed as 
well. 

Even if there should be a cancellation between the inside and outside, the intrinsic 
renormalised energy will diverge due to the d - ,  behaviour near the boundary. By 
contrast the total intrinsic energy evaluated by the zeta function method earlier is 
finite, after eliminating the c2  pole. 

As we see it there are several ways of viewing this situation. 
(i) The total energy really is infinite. This is because of the unphysical nature of 

the assumed boundary conditions, a point of view adopted by Deutsch and Candelas. 
(ii) The local method gives the correct density at any strictly internal point but 

breaks down on a A 3 .  There is then a ‘surface contribution’ which makes the total 
energy finite. The energy density still tends to infinity as the boundary is approached 
and it is this particular local effect that is to be thought of as caused by the unphysical 
boundary conditions. 

It might be thought that since the subtraction procedure in the local approach 
subtracted off only the Minkowski expression one should, in fairness, remove only the 
a2 part of the c2 pole in the zeta function method (actually a2 is zero for flat 
space-time anyway). This would leave the boundary part b 2 / ( s - 1 )  (which is in 
general non-zero), as a divergence. 

Such a possibility can be ruled out by considering the case of the cubic cavity for 
which, although it does not have a smooth boundary, ( ~ ‘ o o )  still diverges as the corners 
are approached so as to render the integrated (~‘oo) infinite (Dowker, unpublished). 
However in this case c2 is zero. In fact, rectangular cavities provide more or less 
explicitly soluble examples of some of these ideas and in the next section we consider 
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in more detail the infinite waveguide of rectangular (actually square) cross section in 
Minkowski space-time, with Dirichlet boundary conditions. 

6.  The infinite waveguide 

We concentrate on the zero-temperature case for which the total internal energy E is 
equal to the negative of the effective Lagrangian, according to (25), so that in terms of 
the spatially integrated space-time zeta function, tr3 k ( s )  (see equation (15)), 

where the square brackets have been inserted to emphasise that a time coincidence 
limit has been taken. 

For ultrastatic space-times, [L4(s)]  can be related to the zeta function on the spatial 
section, the C3(s) introduced in 0 3. The relation is easily found to be 

In general tr3 f;(s) has poles at s = 2, 4, -4, . . . . 
For the infinite waveguide of constant cross-sectional size and shape it is necessary 

to deal with a unit length along the guide and to remove the corresponding integra- 
tion. Then [f;(s)] can be related to 4‘2(s), where &2;(s) is the zeta function for the cross 
section domain of the guide and the square brackets now stand for a coincidence limit 
on the z coordinate, if the guide is along the z axis. We have 

and, combining the above results, the energy per unit length of the guide is given by 

The particular values trd &(-n)  a‘re related to the expansion coefficients C&+n)  

(see Minakshisundaram and Pleijel 1949). Here, tr2 &(-1) is proportional to c2,  and 
this is zero for the rectangle (e.g. Waechter 1972, Brownell 1957). We shall verify this 
shortly. 

For Dirichlet boundary conditions the integrated zeta function for the rectangle of 
sides a and b is 

Unfortunately for general a and b this cannot be given in closed form but special 
cases are known. For the square, a = 6, Hardy (1919) has given 

m 

I.m=-m 
1‘ ( 1 2  + m2)- = 4 5 R ( S ) p ( S )  
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where 
m 

P ( s ) =  1 (-1)"(2n + l)-, s > 2  
n=O 

which can be continued to the whole s plane to yield the p function. Thus, 

tr2 lZ(s) = (U/..)2s((5R(s)P(s)-5R(2s)) 

where the last term in brackets allows for the non-appearance of terms with either I or 
m zero. 

If s is set equal to -1 and the values 5R(-2) = 0 = p(- l )  are recalled we have 

tr2c2(-1)=O 

as promised. There is no pole in the rectangular case. This is not true for the circle, 
for example, because c2 is not zero (Waechter 1972). 

The p function satisfies the functional relation (Hardy 1949) 

P ( ~ ) =  r ( i  -s)(7T/2)s-1 C O S ( ~ S S / ~ ) ~ ( ~  - 3 )  

@'(- 1 ) = (2/ ..)P (2) 

from which we can deduce that 

where p(2) = 0,915965 . . . is Catalan's constant. Similarly we find for the Riemann 
zeta function 

5k(-2)= - ( 2 ~ ) - ~ 5 ~ ( 3 ) ,  lR(-l) = -(2r2)-'5R(2). 

If these values are substituted into (73) there results 

(74) 2 2 - 1  Eren = E  = - ( 8 ~  a ) (5~(2)P(2)-&5~(3)).  

The numerical value of the term in brackets is -0.381 so that E is positive. For 
periodic boundary conditions there is no (R(3) term, and there is an overall factor of 
Z4. E is then negative. 

Lukosz (1971, 1973a, b) has evaluated the Casimir effect for a cube, and rectan- 
gular waveguide by two methods-eigenvalue summation and images. The two 
methods agree except that in the image method there is still the problem of the 
residual edge divergences mentioned earlier. If these are ignored, Lukosz finds for the 
Casimir energy, E, just the first term in brackets of (74), which makes E negative. (We 
have to allow for an overall factor of 2 since Lukosz is considering electromagnetism). 

The zeta function value for AE would be found by combining the renormalised 
energies as in (63). It can be argued that the outside (AT) effect is a purely divergent 
one. If this is so, and it is by no means obvious, we can identify the E of (74) with 
AEre,, since the energy of the total (A;) tends to zero as the size tends to infinity. 
There would then be a discrepancy between Lukosz's result and ours, although there 
is still the possibility that the last term in (74) is cancelled by the effect of the exterior 
modes. We have not been able to show this. In his eigenvalue method, Lukosz (1971) 
explicitly says that the presence of the walls does not change the energy density 
outside. 

It is interesting to note that exactly the 5 ~ ( 3 )  term in (74) occurs in an image 
method (Dowker, unpublished) as being due to the effect of the images formed by an 
odd number of reflections. The zeta function method appears to give a specific 
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algorithm for dealing with the other images, a set of which are responsible for the 
divergence of ( f w u )  as the corners are approached. 

Another rectangular cavity that can be explicitly dealt with is when b = 2a. One 
now has the sum 

m 1 (1'+4mZ)-' =$(1-2-'  +2"2s))5R(S)P(S)-~(1 +2-2'))5R(2S) 
l , m = l  

and the calculation proceeds as above with the result 

E = - (8 7T 2A )-' ( Z ~ R  (2 )P ( 2 )  - b)5~ (3 )) (75)  

where A = 2a2 is the cross-sectional area. The numerical value of the bracket is 
0.2769 and so, on this theory anyway, as the cross section becomes more elongated 
the energy becomes more negative for the same area. 

We can also roughly check that the change from (74)  to (75)  is in the right direction 
by comparing the average energy densities E / A .  For the square we have 

= 0.38 1 (87r2a ')-' (76)  
while 

2 4 - 1  (E/A)b=za =-0*069(87~ U ) . 
The average density is decreasing as the square waveguide elongates to the parallel- 
plate geometry. This is correct because in the limit b + 00, the answer is the standard 
one (e.g. DeWitt 1975, Schwinger 1975) 

(E/A)b,,,, = -.rr2(1440a4)-' = -0.541(8,1r2a4)-'. 

Unfortunately the explicit results (74),  (75)  cannot be extended to the local 
problem. In order to find the energy density (Poo) we require a closed form for the 
analytic continuation of the local zeta function in the rectangle: 

(Poo) is then given, up to a factor, by evaluating the derivative with respect to s at 
s = - 1 .  (77),  and its off-diagonal form, are Epstein zeta functions with known and 
relevant properties. Their uses for the rectangle and other cross-sectional manifolds, 
such as the Klein bottle and Mobius strip, are treated in a paper in preparation. 

A result which it is sometimes useful to bear in mind, is that in an infinite wedge of 
angle a the renormalised stress tensor (f'wu)rh calculated on the basis of equation 
(69),  for PO = a, is (Dowker 1976, unpublished) 

1 

L -11 
in cylindrical coordinates with 0 = t ,  1 = r, 2 = 8 and 3 = z. Thus the energy density 
diverges negatively, if a < ?T, as the edge of the wedge is approached, r + 0. It is easily 
checked that (78)  reduces to the parallel-plate value as a tends to zero and r to infinity 
in such a way that ai  = a remains finite. 
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7. Scaling and trace anomalies 

If the arbitrary scale length L or, equivalently, the renormalisation point or mass 
parameter (see e.g. Duff 1975, Brown 1977, Hawking 1977, Dowker and Critchley 
1977b) is introduced the modification amounts to an additional (167r2)-’cz In L term 
in, say, the Lgi of equation (15). This will turn the ln(/3/47r) in the free energy (52) 
into ln(P/47rL), making the argument of the logarithm manifestly dimensionless. By 
contrast, the ~ 3 1 2  In Po term acquires a scale from the 5; term. In any particular 
system if 5; could be evaluated one would find a term - c 3 / 2  In D where D is a typical 
dimension characterising the manifold (A3, ad,). 

Changes of scale are related to conformal transformations and this seems to be the 
appropriate place to mention the conformal trace anomalies. 

A standard formula gives the trace of the averaged stress tensor as 

and for Lj,b‘ we use (14). 

finite-temperature version of (47): 
Since the conformal properties of GPO are the same as those of G, we derive the 

Whence with (79) and (14) 

Now, for exactly the same reason that the pole in (15) can be replaced by the 
zero-temperature pole (see (33))’ we can set PO = CO on the right-hand side of (80) so 
that the trace of the finite-temperature averaged stress tensor is the zero-temperature 
trace. 

This is to be expected. A non-zero trace occurs because of the divergence of 
quantum field theory which ‘cancels off’ the zero result expected on the basis of the 
conformal invariance of the classical theory. Since the divergence is the zero- 
temperature one, the anomaly will also be that of the zero-temperature theory, 

This is the local form of the anomaly. If x is an interior point of A3 the right-hand 
side is given in terms of the local density az(x, x) of the volume part of c2 (Minak- 
shisundaram and Pleijel 1949), and so in flat space, for example, 

However if (81) is integrated over 4 3  we have, in general, 

J dxg’/2g’”(ffiu(x)) = -(167r2)-’c2 

with 

CZ = az+ 6 2  

and even in flat space bz is non-zero in general. 
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Equation (82) can be re-written 

PV -$E = -(487r2)-’c2 

where V is the ‘invariant volume’ of J u 3 ,  

v = 

and P is an ‘averaged’ pressure 

= I dx gl’*, 

(83) 

P = $ V - l  d x g  1/2  g ( T ; f ; : i ) .  ii I 
The operational significance of (81) and (83) is not entirely clear to us. 
In d dimensions the local and integrated anomalies are given by ad/&, x )  and c d / 2  

respectively. If d is odd the former vanishes and the latter is a pure boundary term. 

8. Conclusion 

We wish here only to indicate some open questions and possible extensions. 
Clearly it is desirable to discuss the more physical case of electromagnetism (see 

e.g. Balian and Duplantier 1977) since one has more feeling for the boundary 
conditions. One could then introduce imperfectly conducting boundaries and it would 
be very interesting to extend the results of Deutsch and Candelas to determine the 
form of (ffiv) near an arbitrarily shaped interface between two dielectrics, at finite 
temperature. 

It is necessary to clear up the possible discrepancy between the local and the global 
approaches to calculating the total internal energy, say, of the enclosure. 

A more exact analysis of the remainder Ob terms in the free energy for a general 
static metric (see equation ( 5 2 ) )  is required. It is possible to develop a perturbation 
method if Vgoo is small (Kennedy, unpublished). 

The extension of the theory to conformally static space-times, such as Robertson- 
Walker universes, is possible and will be dealt with in a further communication. 

Finally, the effects of any horizons in Ju must be incorporated into the analysis. So 
far we have ignored these. 

References 

Ashtekar A and Magnon A 1975 Proc. R. Soc. A 346 375 
Balian R and Bloch C 1970 Ann. Phys., N Y  60 401 
- 1971 Ann. Phys., N Y  64 271 
Balian R and Duplantier 1977 Ann.  Phys., N Y  104 300 
Baltes H P and Hilf E R 1976 Spectra ofFinite Systems (Mannheim: Bibliographisches Institut) 
Bernard C W 1974 Phys. Rev. D 9 3312 
Brown L S 1977 Phys. Rev. D 15 1469 
Brown L S and Maclay G J 1969 Phys. Rev. 184 1272 
Brownell F H 1957 J. Math. & Phys. 6 119 
Candelas P and Deutsch D 1977 Pros. R .  Soc. A 354 79 
Candelas P and Raine D J 1976 J. Math. Phys. 17 2101 
Case K M and S C Chiu 1970 Phys. Rev. A 1 1170 



920 J S Do wker and G Kennedy 

Christensen S M 1976 Phys. Rev. D 14 2490 
- 1977 Phys. Reo. D 16 in the press 
Clark C 1967 SIAM Rev. 9 627 
Davies P C W 1976 Proc. 8th Texas Symp. on Relativistic Asfrophysics, Boston 1976 (New York: New York 

DeWitt B S 1965 Dynamical Theory of Groups and Fields (New York: Gordon and Breach) 
- 1975 Phys. Rep. 19 295 
Dolan L and Jackiw R 1974 Phys. Rev. D 9 3320 
Dowker J S 1977 J. Phys. A: Math. Gen. 10 115 
Dowker J S and Al'taie M B 1978 Phys. Rev. to be published 
Dowker J S and Critchley R 1976a Phys. Rev. D 13 3224 
- 1976b J. Phys. A: Math. Gen. 9 535 
- 1977a Phys. Rev. D 15 1484 
- 1977b Phys. Rev. D 16 3390 
Duff M J 1975 Quantum Gravity eds C J Isham, R Penrose and D W Sciama (Oxford: Clarendon) 
Eisenhart L P 1926 Riemannian Geometry (Princeton: Princeton University Press) 
Fulling S A 1973 Phys. Reo. D 7 2850 
Gibbons G W 1977 Phys. Lett. 60A 385 
Gibbons G W and Hawking S W 1977 Phys. Rev. D 15 2738,2753 
Gibbons G Wand Perry M J 1977 Proc. R. Soc. in the press 
Gilkey P B 1975a J. Dif .  Geom. 10 601 
- 1975b Proc. Symp. on Pure Mathematics vol. 27 (Providence RI: American Mathematical Society) 

_. 1975c Ado. Math. 15 334 
Greiner P 1971 Archs Ration. Mech. Analysis 41 163 
Hardy G H 1919 Mess. Math. 49 85 
- 1949 Divergent Series (Oxford: Clarendon) 
Hawking S 1977 Commun. Math. Phys. 55 133 
Isham C J 1977 Imperial College Report ICTP/76/5 
Kramer D and Lotze K H 1974 Acta Phys. Pol. B 5 437 
Lukosz W 1971 Physica 56 109 
- 1973a Z. Phys. 258 99 
- 1973b Z. Phys. 262 327 
Martin P C and Schwinger J 1959 Phys. Rev. 115 1342 
McKean H P and Singer I M 1967 J. Dif.  Geom. 1 43 
Mehra J 1967 Physica 37 145 
Minakshisundaram S and Pleijel A 1949 Can. J. Math. 1 2 4 2  
Parker L 1973 Phys. Rev. D 7 976 
Sakai T 1971 Tohoku Math. J. 23 589 
Schwinger J 1975 Len. Math. Phys. 1 4 3  
Seeley R T 1967 Proc. Symp. on Pure Mathematics vol. 10 (Providence, RI: American Mathematical 

Unruh W G 1974a Phys. Rev. D 10 3194 
- 1974b Proc. R. Soc. A 338 517 
Utiyama R and DeWitt B S 1962 J. Math. Phys. 3 608 
Waechter R J 1972 Proc. Camb. Phil. Soc. 72 439 

Academy of Sciences) to be published 

p 265 

Society) p 288 


